Quiz 1 Solutions

1. Give counterexamples to disprove the following statements about sets in \mathbb{R}^{n}.
(a) The intersection of an infinite collection of open sets is open.
(b) The union of an infinite collection of closed sets is closed.

Solution. (a) Consider the collection $\left\{B\left(0 ; \frac{1}{n}\right)\right\}_{n \in \mathbb{N}}$ of open balls in \mathbb{R}^{n} centered at origin. It is easy to see that

$$
\bigcap_{n \in \mathbb{N}} B\left(0 ; \frac{1}{n}\right)=\{0\},
$$

which is a finite set, and hence a closed set of \mathbb{R}^{n}.
(b) Consider any open ball $B(a ; r)$ in \mathbb{R}^{n}. Please note that any open ball in \mathbb{R}^{n} will have infintely many points. Moreover, it is clear that

$$
B(a ; r)=\bigcup_{x \in B(a ; r)}\{x\},
$$

where each $\{x\}$ is a closed set of \mathbb{R}^{n}.
Alternatively, we can take the collection of closed sets $\left\{B\left(0 ; \frac{1}{n}\right)^{c}\right\}_{n \in \mathbb{N}}$. By applying, De-Morgan's Law in (a), we have

$$
\bigcup_{n \in \mathbb{N}} B\left(0 ; \frac{1}{n}\right)^{c}=\mathbb{R}^{n} \backslash\{0\},
$$

which is an open set in \mathbb{R}^{n}.
2. Let $f(x, y)=0$, if $y \leq 0$ or if $y \geq x^{2}$ and let $f(x, y)=1$ if $0<y<x^{2}$.
(a) Show that $f(x, y) \rightarrow 0$ as $(x, y) \rightarrow(0,0)$ along any straight line through the origin.
(b) Determine whether f is continuous at $(0,0)$.

Solution. (a) Any straight line through the origin will be of the form $y=m x$.

Case 1: Let $m=0$. Then $y=0$, then $f(x, 0)=0$, for all x. Therefore, the limit along the line $y=0$ is 0 .

Case 2: Assume that $m>0$. For sufficiently small $x \geq 0$, we have $m x \geq x^{2}$, and hence $f(x, m x)=0$. For $x<0, y<0$, and therefore $f(x, y)=0$. So the limit along $y=m x$ will be 0 in this case.

Case 3: Assume that $m<0$. For $x \geq 0$, we have $m x \leq 0$, and hence $f(x, y)=0$. For $x<0$ and sufficiently close to 0 , we have $m x>x^{2}$, and hence $f(x, y)=0$. Therefore, the limit along $y=m x$ will be 0 in this case.
(b) Consider the curve $y=x^{2} / 2$, for $x>0$. Then $y<x^{2}$, and consequently, $f(x, y)=1$ along the curve. Therefore, the limit is also 1 along the curve. From this and (a) we can conclude that f is not continuous.

